Пресса об РФФИ

Учёные разработали биоморфную модель нейрона для имитации работы мозга

Исследовательская группа Тюменского государственного университета (ТюмГУ) разработала биоморфную (подражающую природе) модель нейрона и сформулировала концептуальные принципы построения нейронной сети на её основе. Результаты исследования опубликованы в «Neural Computing and Applications».

Разработанная модель нейрона имеет сходства с биологической не только в структурном отношении, но и функциональном. Она состоит из трёх отдельных функциональных частей – дендритов, сомы и аксона и позволяет реализовывать любые соединения между ними, что придаёт большую гибкость архитектуре нейросети.

Известно, что для возбуждения нейрона требуется электрический потенциал выше определённого порога. В предложенной модели исследователи учитывали не форму поступающего электрического импульса, а среднюю частоту следования электрических импульсов. По мнению учёных ТюмГУ, такой алгоритм прохождения сигналов даёт возможность увеличить шаг по времени, и, как следствие, увеличить скорость расчёта нейросети.

Ранее тюменские исследователи сообщили, что в основе функционирования биоморфного нейропроцессора лежат мемристоры. Они выполняют роль синапсов (область контакта между двумя нейронами). Использование мемристоров на основе разработанной модели позволяет построить сверхбольшую биоморфную нейросеть, которая имитирует работу кортикальной колонки мозга на автономном аппаратном средстве (биоморфном нейропроцессоре).

Особое внимание к кортикальной колонке неслучайно: эта структура считается элементарным модулем в системе обработки информации мозгом. По мнению исследователей, с помощью множества искусственных кортикоморфных колонок можно создать модель неокортекса головного мозга, которая не будет требовать больших вычислительных мощностей. Большая часть программных расчётов будет сделана с помощью специализированного электронного устройства.

«Увеличение быстродействия и энергоэффективности расчётов биоморфной нейросети по сравнению с существующими сегодня вычислительными средствами возможно за счёт применения смешанных аналогово-цифровых вычислений, в том числе с помощью мемристоров, интегрированных в наноразмерные кроссбары», — рассказал руководитель исследовательской группы, доктор физико-математических наук, профессор кафедры прикладной и технической физики ТюмГУ Сергей Удовиченко.

Для проверки работоспособности биоморфной модели нейрона исследователи построили тестовую нейросеть путём последовательной сборки из функциональных блоков и начального задания связей на основе экспериментальных данных нейрофизиологии.

В настоящее время при поддержке гранта Российского фонда фундаментальных исследований (РФФИ) проводятся научные исследования по реализации ассоциативного самообучения и генерации новой ассоциации в аппаратной нейросети с запоминающей матрицей на основе комбинированного мемристорно-диодного кроссбара в качестве массива синапсов.

Источник: РИА Новости
Фото: Sabine Zierer / Pixabay

Президент России
Правительство Российской Федерации
Министерство науки и высшего образования Российской Федерации
Российская академия наук
Российский научный фонд
Фонд перспективных исследований