Пермский национальный исследовательский политехнический университет (г. Пермь), 08.11.2021
Дата публикации: 30.12.2021
Перед строительством зданий всегда проводят инженерно-геологические изыскания и изучают характеристики грунта. Это необходимо в том числе для того, чтобы избежать излишней осадки грунтового основания фундамента. Сейчас для расчётов используют дорогостоящие методы и более экономичные способы, которые не всегда точны. Разработчики из Пермского Политеха создали нейросеть, которая позволит спрогнозировать осадку грунта без дополнительных исследований.Разработка была реализована при финансовой поддержке Российского фонда фундаментальных исследований.
В разработке приняли участие молодой учёный Ян Офрихтер и его научный руководитель, профессор кафедры строительного производства и геотехники, доктор технических наук Андрей Пономарев.
— Для прогноза осадки свай в грунте необходимо учесть множество факторов: характеристики грунта, геометрические размеры сваи и способ её установки. Изыскания проводят с помощью прямых и косвенных методов. Первые требуют финансовых затрат, а вторые – дополнительных расчётов. Поэтому мы использовали другой подход: построили искусственную нейронную сеть и обучили её выполнять прогноз прямых испытаний по данным более экономичных косвенных, — рассказывает автор проекта, ассистент, младший научный сотрудник кафедры строительного производства и геотехники Пермского Политеха Ян Офрихтер.
Разработка позволит в дальнейшем не проводить дополнительных исследований. Вместо этого нужно будет пополнять существующую базу данных. За счёт способности нейросетей обрабатывать сложные зависимости можно использовать результаты различных испытаний в комплексе. Этот подход позволит изучить большее количество параметров грунта и значительно повысить точность прогнозирования.
Чтобы получить результат, нейросеть использует данные прямых испытаний, статического зондирования, вертикальной нагрузки и параметры сваи. Учёные протестировали множество моделей нейронных сетей, чтобы найти наиболее эффективную архитектуру. В результате они получили сеть из 4 скрытых слоёв, каждый из которых состоят из 200 нейронов. Машинное обучение исследователи провели с помощью метода обратного распространения ошибки, используя базу данных уже существующих объектов.
Результаты, которые представила нейросеть, оказались на 15-20 % точнее, чем данные осадки по традиционным методикам. По словам учёных, разработка позволила повысить точность прогноза с использованием меньшего количества информации.
Источник: ПНИПУ
Фото: Danist Soh / Unsplash